Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to- Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such dynamic environments. To address these challenges, this study introduces a novel deep learning-based IDS designed specifically for EV communication networks. We present a hybrid model that integrates convolutional neural networks (CNNs), long short-term memory (LSTM) layers, and adaptive learning strategies. The model was trained and validated using the VeReMi dataset, which simulates a wide range of attack scenarios in V2X networks. Additionally, an ablation study was conducted to isolate the contribution of each of its modules. The model demonstrated strong performance with 98.73% accuracy, 97.88% precision, 98.91% sensitivity, and 98.55% specificity, as well as an F1-score of 98.39%, an MCC of 0.964, a false-positive rate of 1.45%, and a false-negative rate of 1.09%, with a detection latency of 28 ms and an AUC-ROC of 0.994. Specifically, this work fills a clear gap in the existing V2X intrusion detection literature—namely, the lack of scalable, adaptive, and low-latency IDS solutions for hardware-constrained EV platforms—by proposing a hybrid CNN–LSTM architecture coupled with an elastic weight consolidation (EWC)-based adaptive learning module that enables online updates without full retraining. The proposed model provides a real-time, adaptive, and high-precision IDS for EV networks, supporting safer and more resilient ITS infrastructures....
Background: Timely intervention and effective control of Alzheimer’s disease (AD) have been shown to limit memory loss and preserve cognitive function and the ability to perform simple activities in older adults. In addition, magnetic resonance imaging (MRI) scans are one of the most common and effective methods for early detection of AD. With the rapid development of deep learning (DL) algorithms, AD detection based on deep learning has wide applications. Methods: In this research, we have developed an AD detection method based on three-dimensional (3D) convolutional neural networks (CNNs) for 3D MRI images, which can achieve strong accuracy when compared with traditional 3D CNN models. The proposed model has four main blocks, and the multi-layer fusion functionality of each block was used to improve the efficiency of the proposed model. The performance of the proposed model was compared with three different pre-trained 3D CNN architectures (i.e., 3D ResNet-18, 3D InceptionResNet-v2, and 3D Efficientnet-b2) in both tasks of multi-/binary-class classification of AD. Results: Our model achieved impressive classification results of 91.4% for binary-class as well as 80.6% for multi-class classification on the Open Access Series of Imaging Studies (OASIS) database. Conclusions: Such results serve to demonstrate that multi-stage feature fusion of 3D CNN is an effective solution to improve the accuracy of diagnosis of AD with 3D MRI, thus enabling earlier and more accurate diagnosis....
Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field example. After analyzing and correcting the quality of the logging data collected on site by using DBSCAN (a density clustering algorithm), five parameters of WOB, rotating speed, displacement, pump pressure, and torque are selected to predict and calculate the downhole mechanical ROP. Adjust the structure of a traditional artificial BP neural network and design a multi-branch parallel neural network, change the basic architecture of the original hierarchical operation, make full use of the operation efficiency of a computer to realize parallel operation, and adopt the method of point-to-point depth comparison when evaluating the well depth tracking effect. The results indicate that the MAE and mechanical drilling rate evaluation values obtained were 1.18 and 0.873, respectively. The multi-branch parallel neural network achieved a 66.55% improvement in MAE compared to the original BP neural network, while the R2 evaluation method showed a 61.82% increase. The average point-by-point comparison error in the example calculation was 0.012 m, with a maximum error of 0.268 m. This result can serve as a fundamental basis for judging changes in well depth during the drilling process....
This paper proposes a low-complexity signal detection method for orthogonal time frequency space (OTFS) communication systems, based on a separable convolutional neural network (SeCNN), termed SeCNN-OTFS. A novel SeparableBlock architecture is introduced, which integrates residual connections and a channel attention mechanism to enhance feature discrimination and training stability under high Doppler conditions. By decomposing standard convolutions into depthwise and pointwise operations, the model achieves a substantial reduction in computational complexity. To validate its effectiveness, simulations are conducted under a standard OTFS configuration with 64-QAM modulation, comparing the proposed SeCNN-OTFS with conventional CNN-based models and classical linear estimators, such as least squares (LS) and minimum mean square error (MMSE). The results show that SeCNN-OTFS consistently outperforms LS and MMSE, and when the signal-to-noise ratio (SNR) exceeds 12.5 dB, its bit error rate (BER) performance becomes nearly identical to that of 2D-CNN. Notably, SeCNN-OTFS requires only 19% of the parameters compared to 2D-CNN, making it highly suitable for resource-constrained environments such as satellite and IoT communication systems. For scenarios where higher accuracy is required and computational resources are sufficient, the CNN-OTFS model—with conventional convolutional layers replacing the separable convolutional layers—can be adopted as a more precise alternative....
In complex testing scenarios of large-scale information systems, communication networks, and the Internet of Things, exhaustive testing is always prohibitively expensive and timeconsuming. T-way combinatorial testing has emerged as a cost-effective solution. To address the problem of generating test suites for t-way combinatorial testing, a Logical Combination Index Table (LCIT) is proposed. Utilizing the LCIT, the t-way combinatorial coverage model (t-wCCM) is constructed to guide the test case generation process. Multistart Construction Procedure (MsCP) algorithm is employed to generate an initial solution set, and then local optimization is performed using a low-complexity Balanced Local Search (BLS) algorithm. Further, Evolutionary Path Relinking combined with the BLS (EvPR + BLS) algorithm is proposed to accelerate the convergence process. Experiments show that the proposed Refined Evolutionary Heuristic (REH) algorithm performs best on 50% of the classic test instances, and performs superior to the average on 66% of the test instances, with a relative improvement in the maximum computation time of approximately 33.33%....
Loading....